30 research outputs found

    Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam

    Get PDF
    This research investigated the performance of four different machine learning supervised image classifiers: artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM) using SPOT-7 and Sentinel-1 images to classify mangrove age and species in 2019 in a Red River estuary, typical of others found in northern Viet Nam. The four classifiers were chosen because they are considered to have high accuracy, however, their use in mangrove age and species classifications has thus far been limited. A time-series of Landsat images from 1975 to 2019 was used to map mangrove extent changes using the unsupervised classification method of iterative self-organizing data analysis technique (ISODATA) and a comparison with accuracy of K-means classification, which found that mangrove extent has increased, despite a fall in the 1980s, indicating the success of mangrove plantation and forest protection efforts by local people in the study area. To evaluate the supervised image classifiers, 183 in situ training plots were assessed, 70% of them were used to train the supervised algorithms, with 30% of them employed to validate the results. In order to improve mangrove species separations, Gram–Schmidt and principal component analysis image fusion techniques were applied to generate better quality images. All supervised and unsupervised (2019) results of mangrove age, species, and extent were mapped and accuracy was evaluated. Confusion matrices were calculated showing that the classified layers agreed with the ground-truth data where most producer and user accuracies were greater than 80%. The overall accuracy and Kappa coefficients (around 0.9) indicated that the image classifications were very good. The test showed that SVM was the most accurate, followed by DT, ANN, and RF in this case study. The changes in mangrove extent identified in this study and the methods tested for using remotely sensed data will be valuable to monitoring and evaluation assessments of mangrove plantation projects

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories

    Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants

    Get PDF
    Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world's men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m2). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world's poorest regions, especially in south Asia

    FPGA-based fuzzy sliding mode control for sensorless PMSM drive

    Full text link
    This paper presents an observer-based fuzzy sliding mode controller for sensorless Permanent Magnet Synchronous Motor (PMSM) drive based on the Field Programmable Gate Array (FPGA) technology. For enhancement of robustness, a sliding mode observer (SMO) is proposed to estimate first the current and back electromotive force (EMF), then to derive the flux angle. These estimated values together with the computed rotor speed of the motor are fed back for the control purpose in both the current loop and the speed loop. To cope with dynamic uncertainty and external load, a fuzzy sliding mode control (FSMC) is designed by incorporating a fuzzy inference mechanism into the proposed sliding mode control scheme to tune the discontinunous gain in the speed control loop. An FPGA chip is designed for implementing the vector-controlled current loop as well as the speed control loop. The very high speed integrated circuit-hardware description language (VHDL) is adopted to describe advantageous behaviors of the proposed control system. By integrating advantages of the sensorless and fuzzy sliding mode control techniques into the speed controller of a PMSM drive, its performance can be substantially enhanced while improving cost-effectiveness and reliability. The validity of the proposed approach is verified through results based on the VDHL Modelsim and Simulink co-simulation method. © 2012 IEEE

    Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam

    No full text
    Currently, remote sensing platforms provide state-of-the-art data for multiple purposes including applications related to coastal wetlands. Mangrove above-ground biomass (MAGB) together with its extent is considered well correlated with the habitats’ environmental and economic values. Above-ground biomass can be estimated by models that integrate remote sensing, field data and statistical information. However, it remains difficult to decide which model and which data offer the best performance for any one study location. Hence, this study aims to assess the spatial change in MAGB over a 45-year period and investigate different approaches to quantify this change through linear and multi linear regression models. Specifically, we test a non-linear model (Multivariate Adaptive Regression Splines; MARS), and non-parametric machine learning models, to predict MAGB using vegetation indices and biophysical variables derived from optical remote sensing data from Sentinel-2, Landsat-8, SPOT-7 and synthetic aperture radar remote sensing data from ALOS-2. The multi linear regression (MLR) and the MARS models were trained by field measured MAGB data to a good level of accuracy (R2 = 0.80 and RMSE = 5.56 Mg ha−1 for MLR and R2 = 0.89, RMSE = 5.42 Mg ha−1 for MARS). These models were subsequently applied to Landsat 2, 5 and 8 time-series images to assess changes in MAGB values and mangrove forest extent over the period 1975 to 2020. To ensure accurate training data for the models, we conducted field work to measure MAGB in 24 plots measured in May 2019. Findings showed that the MARS model generated MAGB values with higher accuracy than linear regression and multi linear regression models. Uses of vegetation indices (Normalized Differenced Vegetation Index, Soil-adjusted Vegetation Index, Green-Normalized Differenced Vegetation Index, Simple Ratio, and Red-edge Simple Ratio) generated MAGB values with accuracy slightly higher than using biophysical variables (Leaf area index, Fraction of Absorbed Radiation, Fractional vegetation cover, and Leaf chlorophyll content). Sentinel-2 and Landsat 8 were effective data sources for MAGB estimates, while SPOT-7 and ALOS-2 produced acceptable MAGB accuracy. Modelling the Landsat time series found an increase in both MAGB values and forest extent over the 1975–2020 period. The MARS model, Sentinel-2, Landsat 8 and vegetation indices are the recommended models and data to use to measure MAGB and could be used to understand changes in MAGB and forest extent at national and regional scales

    Opportunistic infections in hospitalized HIV-infected adults in Ho Chi Minh City, Vietnam: a cross-sectional study.

    No full text
    The HIV epidemic is emerging rapidly in Vietnam. We studied the prevalence of opportunistic infections by performing clinical and microbiological investigations in 100 hospitalized HIV-infected adults in Ho Cho Minh City, Vietnam. The median CD4 count was 20 cells/mm(3) and in-hospital mortality was 28%. The most frequent diagnoses were oral candidiasis (54), tuberculosis (37), wasting syndrome (34), lower respiratory tract infection (13), cryptococcosis (9), and penicilliosis (7). Bacterial (other than tuberculosis) and parasitic infections were uncommon. Regional differences should be considered when deciding which diagnostic procedures and prophylactic measures to implement. In Vietnam, routine mycobacterial blood cultures do not provide greater yield than chest radiography and sputum and lymph node aspirate smears. Prophylactic trimethoprim/sulphamethoxazole against Pneumocystis jiroveci pneumonia may confer little benefit, and high rates of isoniazid resistance may affect the efficacy and feasibility of tuberculosis chemoprophylaxis. However, the usefulness of itraconazole prophylaxis for cryptococcosis and penicilliosis merits further consideration

    Hydropower dams, river drought and health effects: A detection and attribution study in the lower Mekong Delta Region

    Full text link
    The upstream construction of hydropower dams may drastically intensify climate change impacts due to changing the natural river flood-drought cycle and reducing the amount of water that flows into the lower Mekong Delta river, leading to hydrological and environmental health impacts. However, until now the influence of drought on residents’ health in the lower MDR, where river drought is highly sensitive to recently built hydropower plants, has not been examined. The objectives of this study are, for the first time, to detect the health impacts of river drought on residents and to evaluate the contribution of hydropower dams to the impacts of drought on health in the lower Mekong Delta Region (MDR). We applied the multi-step approaches of a Detection and Attribution study. First, we detected the effects of the river drought on the risk of hospitalization using a Multivariable Fractional Polynomials algorithm (MFP). Second, we linked the long-term changes of the river water level (RWL) to the operation of the first hydropower dam in the upper MDR using the interrupted time-series model (ITS). Finally, we quantified the hospitalizations and related economic loss attributed to the river drought. The results show that the percentage changes in risk of all-cause, respiratory, and renal hospitalizations attributed to the river drought were 2%, 2%, and 7%. There were significant reductions in average level and trend of the RWL during the post-1995 period, when the first hydropower dam began operation in the upper MDR, even though the cumulative rainfall in the MDR had not changed. The all-cause hospitalizations attributed to the river drought were 1134 cases during the period 1995–2014, which resulted in total additional cost at two provincial hospitals of US $360,385. This current study demonstrates the link between hydropower dams, river drought, and health impacts. As the MDR is highly vulnerable to climate change, these findings about the devastating impacts of hydropower dams and environmental change have important implications for the lives of downstream residents

    Xpert MTB/RIF Ultra versus Xpert MTB/RIF for the diagnosis of tuberculous meningitis: a prospective, randomised, diagnostic accuracy study

    No full text
    Background: Xpert MTB/RIF Ultra (Xpert Ultra) might have higher sensitivity than its predecessor, Xpert MTB/RIF (Xpert), but its role in tuberculous meningitis diagnosis is uncertain. We aimed to compare Xpert Ultra with Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults. Methods: In this prospective, randomised, diagnostic accuracy study, adults (≥16 years) with suspected tuberculous meningitis from a single centre in Vietnam were randomly assigned to cerebrospinal fluid testing by either Xpert Ultra or Xpert at baseline and, if treated for tuberculous meningitis, after 3–4 weeks of treatment. Test performance (sensitivity, specificity, and positive and negative predictive values) was calculated for Xpert Ultra and Xpert and compared against clinical and mycobacterial culture reference standards. Analyses were done for all patients and by HIV status. Findings: Between Oct 16, 2017, and Feb 10, 2019, 205 patients were randomly assigned to Xpert Ultra (n=103) or Xpert (n=102). The sensitivities of Xpert Ultra and Xpert for tuberculous meningitis diagnosis against a reference standard of definite, probable, and possible tuberculous meningitis were 47·2% (95% CI 34·4–60·3; 25 of 53 patients) for Xpert Ultra and 39·6% (27·6–53·1; 21 of 53) for Xpert (p=0·56); specificities were 100·0% (95% CI 92·0–100·0; 44 of 44) and 100·0% (92·6–100·0; 48 of 48), respectively. In HIV-negative patients, the sensitivity of Xpert Ultra was 38·9% (24·8–55·1; 14 of 36) versus 22·9% (12·1–39·0; eight of 35) by Xpert (p=0·23). In HIV co-infected patients, the sensitivities were 64·3% (38·8–83·7; nine of 14) for Xpert Ultra and 76·9% (49·7–91·8; ten of 13) for Xpert (p=0·77). Negative predictive values were 61·1% (49·6–71·5) for Xpert Ultra and 60·0% (49·0–70·0) for Xpert. Against a reference standard of mycobacterial culture, sensitivities were 90·9% (72·2–97·5; 20 of 22 patients) for Xpert Ultra and 81·8% (61·5–92·7; 18 of 22) for Xpert (p=0·66); specificities were 93·9% (85·4–97·6; 62 of 66) and 96·9% (89·5–91·2; 63 of 65), respectively. Six (22%) of 27 patients had a positive test by Xpert Ultra after 4 weeks of treatment versus two (9%) of 22 patients by Xpert. Interpretation: Xpert Ultra was not statistically superior to Xpert for the diagnosis of tuberculous meningitis in HIV-uninfected and HIV-infected adults. A negative Xpert Ultra or Xpert test does not rule out tuberculous meningitis. New diagnostic strategies are urgently required.<br/
    corecore